Cl and Cloud Computing

17-313 Fall 2024
Foundations of Software Engineering
https://cmu-17313qg.github.io
Eduardo Feo Flushing

S3D Vellons

Universi

https://cmu-17313q.github.io/

Review: Continuous Integration

Observation

Cl helps us catch errors
before others see them

Clis triggered by commits, pull
requests, and other actions

Example: Small scale Cl, with a service like CircleCl, GitHub
Actions or TravisCl

commits code t * hecks for updates
Developer
GitHub
3,. > &

CircleCl G'tl_"Ub TravisCl
Actions

Runs build for each commit

S3D I

Universi

Agile values fast quality feedback loops

Image source: https:/sdtimes.com/devops/feedback-loops-are-a-prerequisite-for-continuous-improvement/
Carnegie
3 D Mellon

Universi

Automating Feedback Loops is Powerful

HOW LONG (AN YoU WORK ON MAKING A ROUTINE. TASK MORE
EFRCIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(RCROSS FIVE YEARS)

Consider tasks that are o YO0 PO T T

done by dozens of e Jow; D LEEY St YoRRr

1 520000 | [T oA | 200088 | 30 | i o | b | cecos

dgvelopers (e.g. 5 200]| 2| 2700 21| 5| 25
testing/deployment) S

MINUTES [MINUTES | SECONDS

30 SECONDS | { s (3] onvs |12 voors | 2 voors mmsu?es s

HOwW oo
Mook 1 MNVTE 8m@m [T] oAy | 4 Hoves | 1 Howe M’Nﬁ;)ms
emnanas]

T 5 MNTES | 9 Monts | T U (2] v 21 Houes | 5 HouRs
SHAVE 30 MNUTES 6 Mows (T B oavs [T oa | 2 Houes

1 HOR 10 vowss| 2 vowts |[10] oAvs [2]oavs| 5 Hows
o

6 HOURS 2 o8 | 3 e | [1] DAY
[T o Buewo |[B]0m

S3D o

Universi

https://xkcd.com/1205/

Attributes of effective Cl processes

« Policies:
« Do not allow builds to remain broken
for a long time
« Cl should run for every change
« Cl should not completely replace
pre-commit testing
* Infrastructure:

« Cl should be fast, providing feedback
within minutes or hours

* Cl should be repeatable (deterministic)

S3D

+ Output the full test name

All checks have passed
9 successful checks

v Build and Test the Grader [build (push) Successfu... Details
v Check dist/ | check-dist (push) Successful in 30s Details
v O Build and Test the Grader / test (reference) (push) ... Details i
+ () Build and Test the Grader / test (b) (push) Succes... Details ;
.~ =\ Ruiild and Tact tha Gradar | tact te-ianara) (nush) Nataile

Tools: extract_features.py: correct define name for AP_RPM_ENABLED
, peterbarker committed 5 days ago X

AP_Mission: prevent use of uninitialised stack data -
, peterbarker committed 5 days ago X

2

AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... -
q) andyplper authored and tridge committed 6 days ago X

SITL: Fixed rounding lat/Ing issue when running JSBSim SITL -
:':) ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
” yuri-rage authored and tridge committed 6 days ago X
o =1€
Mellon

Universi

Effective Cl processes are run often
enough to reduce debugging effort

e Failed Cl runs indicate a bug was B prestodb / presto
introduced, and caught in that run = = = w v

+/ master This patch bumps Alluxio dependency to 2.3.0-: - #52300 passed © 10 hrs 49 min 31 sec

M @ James Sun o 3630282 [2days ago

* VIore cnanges per-Cilrun reqguire

| master Handle query level timeouts in Presto on Spark - #52287 errored © 11 hrs 6 min 44 sec

more manual debugging effort to p—— =
gg g | master Fix flaky test for TestTempStorageSingleStream o #52284 errored © 11 hrs 50 min 37 sec

S S i I | @ Wwenlei Xie o 193a4cd = 2days ago
EI g I I EI I I l a master Check requirements under try-catch o #52283 passed © 11 hrs 3 min 20 sec

© Andrii Rosa o FFF331F & [2 days ago

.
i m S I l lgl e C I l a l lge p e r- C | r u I I / master Update TestHiveExternalWorkersQueries to cre o #52282 passed © 10 hrs 55 min 37 sec
O 746d7b5 7

@ Maria Basmanova [2 days ago

. . .
I l l O I I I tS t I l e C u I r I t / master Introduce large dictionary mode in SliceDictior - #52277 passed
@ Maria Basmanova - a9edo7a

(© 10 hrs 43 min 30 sec

[E 2days ago

| master Add Top N queries to TestHiveExternalWorkersC -o- #52271 errored (© 10 hrs 46 min 36 sec
@ Maria Basmanova - 8b62d43 7 f# 3 days ago

X master Fix client-info test-name output -0 #52266 failed © 10 hrs 35 min 49 sec
Leiging Cai o 467277a [F 3days ago

 master Add Thrift transport support for TaskStatus - #52263 passed © 11hrs 13 min 42 sec
© Andrii Rosa o fco4719 © [F 3days ago

Carnegie

Mellon

Universi

Effective Cl processes allocate enough resources

to mitigate flaky tests

* Flaky tests might be dependent on timing (failing due to
timeouts)

* Running tests without enough CPU/RAM can result in
increased flaky failure rates and unreliable builds

1
Number of Projects

S3D Vellons

Universi

https://arxiv.org/abs/2310.12132

Cloud Computing enables Continuous
Integration and Deployment/Delivery

HAD To MoNIToR

ALL)| KNow |5
THE Bo5S5 SAID WE
THE ClLoub.

Cloud Computing

in a Nutshell

© D.Fletcher for CloudTweaks.com ‘

Carnegie

S3D Mellon

1970s Teleprocessing

G
z
2
g
2
g
=3
°
o
o
2
5
2
£

P e P
Photo Credit: ArnoldReinhold, CC BY-SA 3.0 via Wikimedia
Commons

Photo Credit:

Carnegie

Mellon
Universi

https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/History_of_IBM_magnetic_disk_drives#/media/File:IBM_2311_memory_unit.JPG

1980s & 1990s Personal Computing

S3D Vellons

Universi

https://creativecommons.org/licenses/by-sa/2.0/fr/deed.en
http://creativecommons.org/licenses/by-sa/3.0/

2000s Cloud Computing

“Computing may someday be organized as a
public utility just as the telephone system is a
public utility...Each subscriber needs to pay only
for the capacity he actually uses, but he has
access to all programming languages
characteristic of a very large system ...”

McCarthy’s predictions
come true!

Carnegie
Mellon

Universi

A traditional deployment of a Web Application

Content
Delivery
Network

« Content delivery network: caches static -
content “at the edge” (e.g. cloudflare, L
Akamai) Web

« Web servers: Speak HTTP, serve static App

[||~

content, load balance between app Web
servers (e.g. haproxy, traefik) Servers
« App servers: Runs our application (e.g.
nodejs
. J) App
« Misc services: Logging, monitoring, Servers

firewall

« Database servers; Persistent data Database
servers

Carnegie

S3D Viellon

Universi

What parts of this infrastructure can be shared across
different applications?
Internet

Content
Delivery
Network

App 1
S :
) WVeED
; i__l__,_ile--— Servers
App
Servers

@ @ @ Database
servers

S3D Vellons

Universi

Multi-Tenancy creates economies of scale

* At the physical level:

« Multiple customers’ physical machines in the same data center

 Save on physical costs (centralize power, cooling, security, maintenance)
* At the physical server level:

» Multiple customers’ virtual machines in the same physical machine

» Save on resource costs (utilize marginal computing capacity - CPUs, RAM, disk)
* At the application level:

» Multiple customer’s applications hosted in same virtual machine

« Save on resource overhead (eliminate redundant infrastructure like OS)

* “Cloud” is the natural expansion of multi-tenancy at all levels

S3D o

Universi

Cloud infrastructure scales elastically

* “Traditional” computing infrastructure requires capital investment

* “Scaling up” means buying more hardware, or maintaining excess
capacity for when scale is needed

* “Scaling down” means selling hardware, or powering it off

* Cloud computing scales elastically:
* “Scaling up” means allocating more shared resources
* “Scaling down” means releasing resources into a pool
* Billed on consumption (usually per-second, per-minute or per-hour)

S3D o

Universi

Cloud Computing: Analogy using NodeBB

Cloud Computing Structure

Software as a
Service

Cloud
Provides/Maintains

You
Provide/Maintain

Platform as a
Service

EEEEEEEEEEEEEEE

w3

node /ARG

Infrastructure S
as a Service

PaaS & ® e redis nodes&aB »
Operating System
nodeas
Iaa i dirare g :! noe d [og ﬁ»@ﬁ%ﬂg
(services, storage, network, virtualization) @ e re dlS

S3D

Carnegie
Mellon

Universi

Shared infrastructure analogy: Pizza

* Four ways to get pizza: Make yourself,
take and bake, delivery, dine out

* Vendor manages different levels of the
stack, achieving economies of scale

* When would you choose one over the
other?

Traditional
On-Premises
(Legacy)

Dining Table
Drinks
Electric / Gas
Oven
Fire
Pizza Dough
Tomato Sauce

Toppings

Cheese

Pizza as a Service

Infrastructure
as a service
(laas)
Dining Table
Drinks
Electric / Gas

Oven

Fire

Pizza Dough

Tomato Sauce

Toppings

Cheese

Platform
as a service
(Paas)

Dining Table

Electric / Gas

Oven

Fire

Pizza Dough
Tomato Sauce
Toppings

Cheese

Software
as a service
(Saas)
Dining Table
Drinks

Electric / Gas

Oven

Fire

Pizza Dough
Tomato Sauce

Toppings

Cheese

- Made at Home

‘ Take and Bake

Pizza Delivery ‘

Dining Out ‘

@ You Manage

@ Vendor Manages
Pizza as a Service — by Albert Barron (unlicensed?)

Carnegie
Mellon

University

Cloud Computing Structure

Activity

Pick one scenario based on where you are seating

Software as a Service - SaaS (front rows) —
Platform as a Service - PaaS (middle rows) i
Infrastructure as a Service - laaS (back rows) TR —

Discuss in groups of 2-3 the applicability of the assigned cloud service model
(laas, Paas, or SaaS)

- Brainstorm and come up with at least two real-world scenarios where the
assigned cloud service model (laaS, PaaS, or SaaS) would be the most
convenient or optimal choice.

- Identify why their model is the best fit for the scenario and compare it briefly
with the other two models to highlight the advantages of choosing their model.

Carnegie

S3D Mellon_

Cloud services gives on-demand access
to infrastructure, “as a service”

* Vendor provides a service catalog of “X as a service” abstractions that provide
infrastructure as a service

* APl allows us to provision resources on-demand
* Transfers responsibility for managing the underlying infrastructure to a vendor

Please give me...
A virtual machine
A database server
A video chat room Resources

API request (and billing info...)

O

H

S3D Vellons

Universi

Infrastructure as a Service: Virtual Machines

* Virtual machines:

Application
* Virtualize a single large server into many smaller
mac h | nes Middleware
- Separates administration responsibilities for Operating System
physical machine vs virtual machines Virtualization
* OS limits resource usage and guarantees quality Physical Server
per-VM

Storage

« Each VM runs its own OS
Network

« Examples:
Physical data center
* Cloud: Amazon EC2, Google Compute Engine, aS Abstracted physical machin
Azure Self-managed Vendor-managed

* On-Premises: VMWare, Proxmox, OpenStack

S3D Vellons

Universi

Virtual Machines to Containers

* Each VM contains a full operating system

* What if each application could run in the same (overall) operating system? Why have
multiple copies?

e Advantages to smaller apps:
o Faster to copy (and hence provision)
o Consume less storage (base OS images are usually 3-10GB)

S3D Vellons

Universi

CaaS: Containers as a Service

® Vendor supplies an

on-demand instance of an — — o o
operating system PP PP
p g y Appl App2 Appl App2
* Eg: Linux version NN Depend | L Depende Depend | L Depende
. encies ncies encies ncies
® Vendor is free to implement Container 1 Container 2
that instance in a way that ISA+OS Calls — !

optimizes costs across many

clients.
We don’t care what’s under here: it’s an

abstraction!

S3D Vellons

Universi

Docker is the prevailing container platform

® Docker provides a
standardized interface for

) Appl App2
your container to use s |_ App2 P |_ PP
Appl App2 Appl App2
° . Depend Depende Depend Depende
Many vendors will host your encies ncies encies s
DOCker container Container 1 Container 2

® An open standard for
containers also exists (“OClI")

We don’t care what’s under here: it’s an
abstraction!

S3D Vellons

Universi

A container contains your apps and all
their dependencies

« Each application is encapsulated in a “lightweight container,”
includes:
« System libraries (e.g. glibc)
- External dependencies (e.g. nodejs)

“Lightweight” in that container images are smaller than VM
images - multi tenant containers run in the OS

* Cloud providers offer “containers as a service”
(Amazon ECS Fargate, Azure Kubernetes,
Google Kubernetes)

S3D o

Universi

NodeBB / Dockerfile (0 e

angelaz1 Initial NodeBB Commit b6951a8 - last year 1) History

Blame 25 lines (16 loc) - 485 Bytes Raw & 2+ [

FROM node:lts

1

2

3 RUN mkdir -p /usr/src/app && \

4 chown -R node:node /usr/src/app
5 WORKDIR /usr/src/app
6

7

8

9

ARG NODE_ENV
ENV NODE_ENV $NODE_ENV

10 COPY —--chown=node:node install/package.json /usr/src/app/package.json
11

12 USER node

13

14 RUN npm install —-only=prod && \

15 npm cache clean —-force

16

17 COPY —--chown=node:node . /usr/src/app

18

19 ENV NODE_ENV=production \

20 daemon=false \

21 silent=false

22

23 EXPOSE 4567

24

25 CMD test -n "${SETUP}" && ./nodebb setup || node ./nodebb build; node ./nodebb start

Carnegie

Mellon
Universi

Tradeoffs between VMs and Containers

e Performance is comparable

«Each VM has a copy of the OS and libraries
 Higher resource overhead
» Slower to provision
 Support for wider variety of OS'

« Containers are “lightweight”
 Lower resource overhead
* Faster to provision
- Potential for compatibility issues, especially with older software

S3D o

Universi

Platform-as-a-Service: vendor supplies
OS + middleware

« Middleware is the stuff between our app and a user’s

requests:
; . ; Content
« Content delivery networks: Cache static content Delivery
« Web Servers: route client requests to one of our app Network
containers Web

» Application server: run our handler functions in
response to requests from load balancer

* Cloud vendors provide managed middleware platforms Monitoring/ @ @ @

Servers

Database

Telemetry Servers
too: “Platform as a Service”

S 3 D Carnegie

Mellon

Universi

PaasS is often the simplest choice for
app deployment

* Platform-as-a-Service provides components most apps need, fully

managed by the vendor: load balancer, monitoring, application server Application
» Some PaaS run your app in a container: Heroku, AWS Elastic Beanstalk, Middleware
Google App Engine, Railway, Vercel... Operating System
 Other PaaS run your apps as individual functions/event handlers: AWS Virtualization

Lambda, Google Cloud Functions, Azure Functions

Physical Server
* Other PaaSs provide databases and authentication, and run your
functions/event handlers: Google Firebase, Back4App

Storage
Network
Physical data center

PaaS
Carnegie

S3D Mellon

Cloud Infrastructure is best for variable
workloads

« Consider:
» Does your workload benefit from ability to scale up or down?
 Variable workloads have different demands over time (most common)
« Constant workloads require sustained resources (less common)

« Example:
 Need to run 300 VMs, each 4 vCPUs, 16GB RAM

* Private cloud:
* Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
« 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

» Public cloud:
« Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
* 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
» 300 VMs for 1 year: $402,084.00
S3D gt

Universi

Public clouds are not the only option

« "Public” clouds are connected to the internet and available
for anyone to use

« Examples: Amazon, Azure, Google Cloud, DigitalOcean

* “Private” clouds use cloud technologies with on-premises,
self-managed hardware
« Cost-effective when a large scale of baseline resources are needed

« Example management software: OpenStack, VMWare, Proxmox,
Kubernetes

« “Hybrid” clouds integrate private and public (or multiple
public) clouds

. Erfechve approach to “burst” capacity from private cloud to public
clou

S3D o

Universi

