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Review: Continuous Integration




Observation

Cl helps us catch errors
before others see them




Clis triggered by commits, pull
requests, and other actions

Example: Small scale Cl, with a service like CircleCl, GitHub
Actions or TravisCl

commits code t * hecks for updates
Developer
GitHub
3,. > &

CircleCl G'tl_"Ub TravisCl
Actions

Runs build for each commit
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Agile values fast quality feedback loops

Image source: https:/sdtimes.com/devops/feedback-loops-are-a-prerequisite-for-continuous-improvement/
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Automating Feedback Loops is Powerful
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https://xkcd.com/1205/

Attributes of effective Cl processes

« Policies:
« Do not allow builds to remain broken
for a long time
« Cl should run for every change
« Cl should not completely replace
pre-commit testing
* Infrastructure:

« Cl should be fast, providing feedback
within minutes or hours

* Cl should be repeatable (deterministic)

S3D

+ Output the full test name

All checks have passed
9 successful checks

v Build and Test the Grader [ build (push) Successfu... Details
v Check dist/ | check-dist (push) Successful in 30s Details
v O Build and Test the Grader / test (reference) (push) ... Details i
+ () Build and Test the Grader / test (b) (push) Succes... Details ;
.~ =\ Ruiild and Tact tha Gradar | tact te-ianara) (nush) Nataile

Tools: extract_features.py: correct define name for AP_RPM_ENABLED
, peterbarker committed 5 days ago X

AP_Mission: prevent use of uninitialised stack data -
, peterbarker committed 5 days ago X

2

AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... -
q) andyplper authored and tridge committed 6 days ago X

SITL: Fixed rounding lat/Ing issue when running JSBSim SITL -
:':) ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
” yuri-rage authored and tridge committed 6 days ago X
o =1€
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Effective Cl processes are run often
enough to reduce debugging effort

e Failed Cl runs indicate a bug was B prestodb / presto
introduced, and caught in that run = = = w v

+/ master This patch bumps Alluxio dependency to 2.3.0-: - #52300 passed © 10 hrs 49 min 31 sec

M @ James Sun o 3630282 [ 2days ago

* VIore cnanges per-Cilrun reqguire

| master Handle query level timeouts in Presto on Spark - #52287 errored © 11 hrs 6 min 44 sec

more manual debugging effort to p—— =
gg g | master Fix flaky test for TestTempStorageSingleStream o #52284 errored © 11 hrs 50 min 37 sec

S S i I | @ Wwenlei Xie o 193a4cd = 2days ago
EI g I I EI I I l a  master Check requirements under try-catch o #52283 passed © 11 hrs 3 min 20 sec

© Andrii Rosa o FFF331F & [ 2 days ago

.
i m S I l lgl e C I l a l lge p e r- C | r u I I / master Update TestHiveExternalWorkersQueries to cre o #52282 passed © 10 hrs 55 min 37 sec
O 746d7b5 7

@ Maria Basmanova [ 2 days ago

. . .
I l l O I I I tS t I l e C u I r I t / master Introduce large dictionary mode in SliceDictior - #52277 passed
@ Maria Basmanova - a9edo7a

(© 10 hrs 43 min 30 sec

[E 2days ago

| master Add Top N queries to TestHiveExternalWorkersC -o- #52271 errored (© 10 hrs 46 min 36 sec
@ Maria Basmanova - 8b62d43 7 f# 3 days ago

X master Fix client-info test-name output -0 #52266 failed © 10 hrs 35 min 49 sec
Leiging Cai o 467277a [F 3days ago

 master Add Thrift transport support for TaskStatus - #52263 passed © 11hrs 13 min 42 sec
© Andrii Rosa o fco4719 © [F 3days ago
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Effective Cl processes allocate enough resources

to mitigate flaky tests

* Flaky tests might be dependent on timing (failing due to
timeouts)

* Running tests without enough CPU/RAM can result in
increased flaky failure rates and unreliable builds

1
Number of Projects
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https://arxiv.org/abs/2310.12132

Cloud Computing enables Continuous
Integration and Deployment/Delivery




HAD To MoNIToR

ALL )| KNow |5
THE Bo5S5 SAID WE
THE ClLoub.

Cloud Computing

in a Nutshell

© D.Fletcher for CloudTweaks.com ‘
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1970s Teleprocessing
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1980s & 1990s Personal Computing
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2000s Cloud Computing

“Computing may someday be organized as a
public utility just as the telephone system is a
public utility...Each subscriber needs to pay only
for the capacity he actually uses, but he has
access to all programming languages
characteristic of a very large system ...”

McCarthy’s predictions
come true!
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A traditional deployment of a Web Application

Content
Delivery
Network

« Content delivery network: caches static -
content “at the edge” (e.g. cloudflare, L
Akamai) Web

«  Web servers: Speak HTTP, serve static App

[||~

content, load balance between app Web
servers (e.g. haproxy, traefik) Servers
« App servers: Runs our application (e.g.
nodejs
. J ) . . . . App
« Misc services: Logging, monitoring, Servers

firewall

« Database servers; Persistent data Database
servers
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What parts of this infrastructure can be shared across
different applications?
Internet

Content
Delivery
Network

App 1
S :
) WVeED
; i__l__,_ile--— Servers
App
Servers

@ @ @ Database
servers
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Multi-Tenancy creates economies of scale

* At the physical level:

« Multiple customers’ physical machines in the same data center

 Save on physical costs (centralize power, cooling, security, maintenance)
* At the physical server level:

» Multiple customers’ virtual machines in the same physical machine

» Save on resource costs (utilize marginal computing capacity - CPUs, RAM, disk)
* At the application level:

» Multiple customer’s applications hosted in same virtual machine

« Save on resource overhead (eliminate redundant infrastructure like OS)

* “Cloud” is the natural expansion of multi-tenancy at all levels
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Cloud infrastructure scales elastically

* “Traditional” computing infrastructure requires capital investment

* “Scaling up” means buying more hardware, or maintaining excess
capacity for when scale is needed

* “Scaling down” means selling hardware, or powering it off

* Cloud computing scales elastically:
* “Scaling up” means allocating more shared resources
* “Scaling down” means releasing resources into a pool
* Billed on consumption (usually per-second, per-minute or per-hour)
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Cloud Computing: Analogy using NodeBB

Cloud Computing Structure

Software as a
Service

Cloud
Provides/Maintains

You
Provide/Maintain

Platform as a
Service

EEEEEEEEEEEEEEE

w3

node /ARG

Infrastructure S
as a Service

PaaS & ® e redis nodes&aB »
Operating System
nodeas
Iaa i dirare g :! noe d [ og ﬁ»@ﬁ%ﬂg
(services, storage, network, virtualization) @ e re dlS
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Shared infrastructure analogy: Pizza

* Four ways to get pizza: Make yourself,
take and bake, delivery, dine out

* Vendor manages different levels of the
stack, achieving economies of scale

* When would you choose one over the
other?

Traditional
On-Premises
(Legacy)

Dining Table
Drinks
Electric / Gas
Oven
Fire
Pizza Dough
Tomato Sauce

Toppings

Cheese

Pizza as a Service

Infrastructure
as a service
(laas)
Dining Table
Drinks
Electric / Gas

Oven

Fire

Pizza Dough

Tomato Sauce

Toppings

Cheese

Platform
as a service
(Paas)

Dining Table

Electric / Gas

Oven

Fire

Pizza Dough
Tomato Sauce
Toppings

Cheese

Software
as a service
(Saas)
Dining Table
Drinks

Electric / Gas

Oven

Fire

Pizza Dough
Tomato Sauce

Toppings

Cheese

- Made at Home

‘ Take and Bake

Pizza Delivery ‘

Dining Out ‘

@ You Manage

@ Vendor Manages
Pizza as a Service — by Albert Barron (unlicensed?)
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Cloud Computing Structure

Activity

Pick one scenario based on where you are seating

Software as a Service - SaaS (front rows) —
Platform as a Service - PaaS (middle rows) i
Infrastructure as a Service - laaS (back rows) TR —

Discuss in groups of 2-3 the applicability of the assigned cloud service model
(laas, Paas, or SaaS)

- Brainstorm and come up with at least two real-world scenarios where the
assigned cloud service model (laaS, PaaS, or SaaS) would be the most
convenient or optimal choice.

- Identify why their model is the best fit for the scenario and compare it briefly
with the other two models to highlight the advantages of choosing their model.
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Cloud services gives on-demand access
to infrastructure, “as a service”

* Vendor provides a service catalog of “X as a service” abstractions that provide
infrastructure as a service

* APl allows us to provision resources on-demand
* Transfers responsibility for managing the underlying infrastructure to a vendor

Please give me...
A virtual machine
A database server
A video chat room Resources

API request (and billing info...)

O

H
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Infrastructure as a Service: Virtual Machines

* Virtual machines:

Application
* Virtualize a single large server into many smaller
mac h | nes Middleware
- Separates administration responsibilities for Operating System
physical machine vs virtual machines Virtualization
* OS limits resource usage and guarantees quality Physical Server
per-VM

Storage

« Each VM runs its own OS
Network

« Examples:
Physical data center
* Cloud: Amazon EC2, Google Compute Engine, aS Abstracted physical machin
Azure Self-managed Vendor-managed

* On-Premises: VMWare, Proxmox, OpenStack
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Virtual Machines to Containers

* Each VM contains a full operating system

* What if each application could run in the same (overall) operating system? Why have
multiple copies?

e Advantages to smaller apps:
o Faster to copy (and hence provision)
o Consume less storage (base OS images are usually 3-10GB)
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CaaS: Containers as a Service

® Vendor supplies an

on-demand instance of an — — o o
operating system PP PP
p g y Appl App2 Appl App2
* Eg: Linux version NN Depend | L Depende Depend | L Depende
. encies ncies encies ncies
® Vendor is free to implement Container 1 Container 2
that instance in a way that ISA+OS Calls — !

optimizes costs across many

clients.
We don’t care what’s under here: it’s an

abstraction!
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Docker is the prevailing container platform

® Docker provides a
standardized interface for

) Appl App2
your container to use s |_ App2 P |_ PP
Appl App2 Appl App2
° . Depend Depende Depend Depende
Many vendors will host your encies ncies encies s
DOCker container Container 1 Container 2

® An open standard for
containers also exists (“OClI")

We don’t care what’s under here: it’s an
abstraction!
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A container contains your apps and all
their dependencies

« Each application is encapsulated in a “lightweight container,”
includes:
« System libraries (e.g. glibc)
- External dependencies (e.g. nodejs)

“Lightweight” in that container images are smaller than VM
images - multi tenant containers run in the OS

* Cloud providers offer “containers as a service”
(Amazon ECS Fargate, Azure Kubernetes,
Google Kubernetes)
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NodeBB / Dockerfile (0 e

angelaz1 Initial NodeBB Commit b6951a8 - last year 1) History

Blame 25 lines (16 loc) - 485 Bytes Raw & 2+ [

FROM node:lts

1

2

3 RUN mkdir -p /usr/src/app && \

4 chown -R node:node /usr/src/app
5 WORKDIR /usr/src/app
6

7

8

9

ARG NODE_ENV
ENV NODE_ENV $NODE_ENV

10 COPY —--chown=node:node install/package.json /usr/src/app/package.json
11

12 USER node

13

14 RUN npm install —-only=prod && \

15 npm cache clean —-force

16

17 COPY —--chown=node:node . /usr/src/app

18

19 ENV NODE_ENV=production \

20 daemon=false \

21 silent=false

22

23 EXPOSE 4567

24

25 CMD test -n "${SETUP}" && ./nodebb setup || node ./nodebb build; node ./nodebb start

Carnegie
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Tradeoffs between VMs and Containers

e Performance is comparable

«Each VM has a copy of the OS and libraries
 Higher resource overhead
» Slower to provision
 Support for wider variety of OS'

« Containers are “lightweight”
 Lower resource overhead
* Faster to provision
- Potential for compatibility issues, especially with older software
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Platform-as-a-Service: vendor supplies
OS + middleware

« Middleware is the stuff between our app and a user’s

requests:
; . ; Content
« Content delivery networks: Cache static content Delivery
« Web Servers: route client requests to one of our app Network
containers Web

» Application server: run our handler functions in
response to requests from load balancer

* Cloud vendors provide managed middleware platforms Monitoring/ @ @ @

Servers

Database

Telemetry Servers
too: “Platform as a Service”

S 3 D Carnegie
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PaasS is often the simplest choice for
app deployment

* Platform-as-a-Service provides components most apps need, fully

managed by the vendor: load balancer, monitoring, application server Application
» Some PaaS run your app in a container: Heroku, AWS Elastic Beanstalk, Middleware
Google App Engine, Railway, Vercel... Operating System
 Other PaaS run your apps as individual functions/event handlers: AWS Virtualization

Lambda, Google Cloud Functions, Azure Functions

Physical Server
* Other PaaSs provide databases and authentication, and run your
functions/event handlers: Google Firebase, Back4App

Storage
Network
Physical data center

PaaS
Carnegie
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Cloud Infrastructure is best for variable
workloads

« Consider:
» Does your workload benefit from ability to scale up or down?
 Variable workloads have different demands over time (most common)
« Constant workloads require sustained resources (less common)

« Example:
 Need to run 300 VMs, each 4 vCPUs, 16GB RAM

* Private cloud:
* Dell PowerEdge Pricing (AMD EPYC 64 core CPUs)
« 7 servers, each 128 cores, 512GB RAM, 3 TB storage = $162,104

» Public cloud:
« Amazon EC2 Pricing (M7a.xlarge instances, $0.153/VM-hour)
* 10 VMs for 1 year + 290 VMs for 1 month: $45,792.90
» 300 VMs for 1 year: $402,084.00
S3D gt
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Public clouds are not the only option

« "Public” clouds are connected to the internet and available
for anyone to use

« Examples: Amazon, Azure, Google Cloud, DigitalOcean

* “Private” clouds use cloud technologies with on-premises,
self-managed hardware
« Cost-effective when a large scale of baseline resources are needed

« Example management software: OpenStack, VMWare, Proxmox,
Kubernetes

« “Hybrid” clouds integrate private and public (or multiple
public) clouds

. Erfechve approach to “burst” capacity from private cloud to public
clou
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